Introduction
The Bath Fitter is the HQS Quantum Simulations tool to fit a given open quantum system with an
effective open quantum system with finite degrees of freedom. It provides a BathFitter
Python
class that includes several methods specifically for the system-bath analysis. These methods are
fit_boson_bath_to_boson_bath
fit_spin_bath_to_boson_bath
fit_boson_bath_to_fermion_bath
fit_spin_bath_to_fermion_bath
fit_boson_bath_to_spectral_function
fit_spin_bath_to_spectral_function
spin_bath_trotterstep_from_boson_bath
For further information, the API documentation can be found here.
Usage
A BathFitter
instance is created as follows
from hqs_noise_app import BathFitter
bath_fitter = BathFitter(
number_boson_modes=2,
spins_per_bosonic_mode=1,
broadening_constraint=[0.1, 0.1],
background_broadening_ratio=0.1,
minimum_eigenfrequencies=-2,
maximum_eigenfrequencies=2,
fitting_window=(-0.5, 1, 10),
# specified if we are fitting a system-bath with a spin system
coupling_types=["X"],
max_fitting_iterations=5,
max_fitting_error=0.05,
)
# Print docstring of a function in BathFitter
help(bath_fitter.fit_spin_bath_to_boson_bath)
The parameters of BathFitter
are:
number_boson_modes
: Number of bosonic modes used for the fit of bosonic bathsspins_per_bosonic_mode
: Number of spin modes used to represent one bosonic mode.broadening_constraint
(Optional[List[float]]
): The optional broadening constraints. When set toNone
, broadenings of bosonic modes are fitted freely. When given as a list, the relative broadening of all modes is fixed and only a prefactor is fitted. The prefactor corresponds to the Trotter timestep in a quantum cirucit.background_broadening_ratio
(float
): Adds a constant background offset to the diagonal spectral functions when fitting. Given as a ratio of the average broadening.minimum_eigenfrequencies
(Optional[float]
): Minimal value allowed for bath eigenfrequencies.maximum_eigenfrequencies
(Optional[float]
): Maximum value allowed for bath eigenfrequencies.fitting_window
(Optional[Tuple[float, float, int]]
): The frequency window used for the fitting (start, end, steps). If no values are provided, the functions uses the whole frequency range to determine the fit.coupling_types
(Optional[Union[Dict[Tuple[int, int], List[str]], List[str]]]
): A list of the couplings to include (only relevant for spin systems). If None, all the couplings are used: X, Y, Z. The user can also specify this input as a dictionary, where the keys are pairs of indices (system spin index, bath boson index), and the values are the list of couplings (X, Y, Z) which apply to these indices.coupling_indices
(Optional[List[Tuple[int, int]]]
): A list of allowed fermionic hopping operators of the form \(c^\dagger_j c_k\) that are allowed to couple to bosonic modes (only relevant for fermionic systems). For example[(0,0), (0,1)]
only allows coupling operators \(c^\dagger_0 c_0\) and \(c^\dagger_0 c_1\).max_fitting_iterations
(int
): The number of retries allowed when fitting the spectrum.max_fitting_error
(float
): The maximum allowed fitting error in fitting the spectrum.
The HQS Bath Fitter uses a simple metric for the quality of the fit: Let \(A\) be the sum of squares of the difference between the fitter and target and \(B\) be the sum of squares of the fitted spectral function. The quality of the fit is defined as the ratio \(\frac{A}{B}\) where a small ratio corresponds to a good fit. By default, a deviation of 5% is allowed. If the criterion is not met, the fitting is retried and if the number of retries exceeds the maximum the fit fails. By default, the number of retries is 5.
More information about the input arguments and the returned systems can be obtained from
help(bath_fitter.fit_spin_bath_to_boson_bath)
for example.
More examples on how to use the BathFitter
and different functions are in the examples
section.
Examples
Simple example fit_boson_bath_to_boson_bath
In the following, we give an example of the basic usage of the function
fit_boson_bath_to_boson_bath
. We would like to fit a spin-boson model to a boson bath. First we
create a mixed Hamiltonian consisting of a spin- and a boson system.
from struqture_py import mixed_systems, spins, bosons
# Number of bosons and spins.
number_system_spins = 1
number_bosons = 2
# Boson energies and broadening.
bath_energies = [0.5, 1.5]
bath_broadenings = [0.1, 0.2]
# Coupling between system and boson.
system_boson_couplings = [0.3, 0.1]
# Create a new mixed system with one spin and one boson subsystem
spin_boson_hamiltonian = mixed_systems.MixedLindbladOpenSystem(
1,
1,
0,
)
# Set bath energies
for bath_index, bath_energy in enumerate(bath_energies):
index = mixed_systems.HermitianMixedProduct(
# Identity spin operator
[spins.PauliProduct()],
# Create a Boson occupation operator
[bosons.BosonProduct([bath_index], [bath_index])],
[],
)
spin_boson_hamiltonian.system_add_operator_product(index, bath_energy)
# Set bath noise
for bath_index, bath_broadening in enumerate(bath_broadenings):
# create the index for the Lindblad terms.
# We have pure damping
index = mixed_systems.MixedDecoherenceProduct(
# Identity spin operator
[spins.DecoherenceProduct()],
# Create a Boson occupation operator
[bosons.BosonProduct([], [bath_index])],
[],
)
spin_boson_hamiltonian.noise_add_operator_product((index, index), bath_broadening)
# Set couplings, use longitudinal (Z) coupling
for bath_index, system_bath_coupling in enumerate(system_boson_couplings):
index = mixed_systems.HermitianMixedProduct(
# Identity spin operator
[spins.PauliProduct().z(0)],
# Create a Boson coupling operator (always a + a^dagger)
[bosons.BosonProduct([], [bath_index])],
[],
)
spin_boson_hamiltonian.system_add_operator_product(index, system_bath_coupling)
Now we can fit the spin_boson_hamiltonian
to a boson bath with fit_boson_bath_to_boson_bath
by
import numpy as np
from hqs_noise_app import BathFitter
# create spectrum from Spin-Bath-System
min_frequency = -2
max_frequency = 4
number_frequencies = 1000
frequencies = np.linspace(min_frequency, max_frequency, number_frequencies)
bath_fitter = BathFitter(
number_boson_modes=2,
spins_per_bosonic_mode=1,
broadening_constraint=[0.1, 0.1],
background_broadening_ratio=0.1,
minimum_eigenfrequencies=-2,
maximum_eigenfrequencies=2,
fitting_window=(-0.5, 1, 10),
coupling_types=["Z"],
)
fitted_spin_boson_system, _ = bath_fitter.fit_boson_bath_to_boson_bath(
original_system=spin_boson_hamiltonian,
frequencies=frequencies,
number_spins=number_system_spins,
)