# Copyright © 2022-2025 HQS Quantum Simulations GmbH. All Rights Reserved.
# LICENSE PLACEHOLDER
"""Helper routines for nmr spectra calculations."""
from __future__ import annotations
from typing import Optional, TYPE_CHECKING, Union
from scipy import interpolate, optimize, integrate
from numpy import typing as npt
import numpy as np
from hqs_nmr.conversion import k_boltzmann_J_per_K, h_planck_J_s
if TYPE_CHECKING:
from hqs_nmr.datatypes import NMRSolverSettings, NMRCalculationParameters
from hqs_nmr_parameters import NMRParameters, Isotope
from lattice_functions import Fermions as fermions
[docs]
def lorentzian_broadening_from_spin_parameters(
isotopes: list[Isotope],
j_couplings: list[tuple[tuple[int, int], float]],
reference_isotope: Isotope,
) -> float:
"""Estimate the Lorentzian broadening from spin parameters.
Args:
isotopes: List of isotopes for every nucleus, in the same ordering
as shifts. Every isotope is defined as Isotope(mass, symbol).
j_couplings: List containing J-coupling constants between nuclei.
It contains tuples of pairs of integers and the associated coupling value,
representing the respective nuclei indices (via their positions in the isotopes lists,
starting counting with 0).
reference_isotope: Isotope specified as Isotope(mass, symbol) to define the frequency
(w=gamma*field) of the rotating frame. For example, Isotope(1, 'H').
Returns:
The broadening in rad / s.
"""
indexes = [index for index, isotope in enumerate(isotopes) if isotope == reference_isotope]
relevant_jcouplings = {
key: value for key, value in j_couplings if key[0] in indexes or key[1] in indexes
}
max_j = 0.0
if len(relevant_jcouplings) > 0:
max_j = np.max(np.abs(list(relevant_jcouplings.values()))) / 3
if max_j == 0:
max_j = 50
return 2 * np.pi * float(max_j) / 10
[docs]
def lorentzian_broadening_from_fwhm(fwhm: Union[float, np.ndarray]) -> Union[float, np.ndarray]:
"""Broadening of lorentzian is half of the fwhm.
Args:
fwhm: Full width half maximum.
Returns:
Broadening of the Lorentzian in same unit as fwhm.
"""
return fwhm / 2
[docs]
def nmr_rescale_frequencies(
omegas: np.ndarray,
intensity: np.ndarray,
number_steps: int = 100,
limit: float = 0.8e-3,
) -> np.ndarray:
r"""Rediscretize the frequency axis in NumStep frequency points.
Perform an equal area partitioning of intensity. Intensity should be >= 0.
Args:
omegas: Original reference frequencies.
intensity: Reference spectral intensity.
number_steps: Number of frequency points.
limit: Portion of spectrum to be skipped for defining the start and end point.
Returns:
An array with number_steps frequency points of the spectral function for
each frequency.
"""
#
omegas_new = np.zeros(number_steps)
osum = np.empty_like(omegas)
osum[0] = 0
for n in range(1, omegas.size):
osum[n] = osum[n - 1] + 0.5 * (omegas[n] - omegas[n - 1]) * (
intensity[n] + intensity[n - 1]
)
f = interpolate.interp1d(omegas, osum, kind="linear")
def g(x: float, x0: float, a0: float = 0) -> float:
r"""Search function for the equal area partitioning.
Perform an equal area partitioning of intensity. Intensity should be >= 0.
Args:
x: The frequency to optimize.
x0: The start frequency.
a0: The area that should be covered.
Returns:
The frequency point to match the desired area a0.
"""
return f(x) - f(x0) - a0
def g2(x: float, x1: float, a0: float = 0) -> float:
r"""Search function for the equal area partitioning from the upper end.
Perform an equal area partitioning of intensity. Intensity should be >= 0.
Args:
x: The frequency to optimize.
x1: The end frequency.
a0: The area that should be covered.
Returns:
The frequency point to match the desired area a0.
"""
return f(x1) - f(x) - a0
Area = f(omegas[-1])
o1 = optimize.brentq(g, omegas[0], omegas[-1], rtol=1e-12, args=(omegas[0], limit * Area))
o2 = optimize.brentq(g2, o1, omegas[-1], rtol=1e-12, args=(omegas[-1], limit * Area))
omegas_new[0] = o1
omegas_new[-1] = o2
a = Area * (1 - 2 * limit) / (number_steps - 1)
Area2 = g2(o1, o2, 0)
o = o1
for n in range(1, number_steps - 1):
Area2 = g2(o, o2, 0)
a = Area2 / (number_steps - n)
o_old = o
o = optimize.brentq(g, o_old, o2, rtol=1e-12, args=(o_old, a))
omegas_new[n] = o
return omegas_new
[docs]
def guess_frequency_window_ppm(
isotopes: list[Isotope], shifts: npt.ArrayLike, reference_isotope: Isotope
) -> tuple[float, float]:
"""Obtain a guess for a frequency window for a molecule.
Args:
isotopes: List of isotopes; each given as Isotope(mass, symbol).
shifts: List of chemical shifts in parts-per-million (ppm).
reference_isotope: Isotope specified as Isotope(mass, symbol) to define the frequency
(w=gamma*field) of the rotating frame. For example, Isotope(1, 'H').
Returns:
Suggested (omega_min, omega_max) in ppm.
"""
shifts = np.array(shifts)
indices = [index for index, isotope in enumerate(isotopes) if isotope == reference_isotope]
relevant_shifts = [shifts[index] for index in indices]
min_shift = min(relevant_shifts)
max_shift = max(relevant_shifts)
# Only included spin-1/2 nuclei in guess function, list is not comprehensive:
if reference_isotope == (1, "H"):
padding = 0.3 # 5% of ~12ppm range. 0.05*12 = 0.6
elif reference_isotope == (13, "C"):
padding = 5.5 # 5% of ~220ppm range. 0.05*220 = 11
elif reference_isotope == (15, "N"):
padding = 24.0 # 5% of ~960ppm range. 0.05*960 = 48
elif reference_isotope == (19, "F"):
padding = 20.0 # 5% of ~800ppm range. 0.05*800 = 40
elif reference_isotope == (29, "Si"):
padding = 11.0 # 5% of ~440ppm range. 0.05*440 = 22
elif reference_isotope == (31, "P"):
padding = 12.5 # 5% of ~500ppm range. 0.05*500 = 25
elif reference_isotope == (51, "V"):
padding = 25.0 # 5% of ~1000ppm range. 0.05*1000 = 50
elif reference_isotope == (119, "Sn"):
padding = 24.5 # 5% of ~980ppm range. 0.05*980 = 49
elif reference_isotope == (195, "Pt"):
padding = 200.0 # 5% of ~8000ppm range. 0.05*8000 = 400
elif reference_isotope == (207, "Pb"):
padding = 300.0 # 5% of ~12,000ppm range. 0.05* = 600:
else:
# If something not thought of, use relative methods (modified to handle negatives):
largest_difference = max_shift - min_shift
max_absolute_shift = np.max(np.abs(shifts))
# If close to zero the shift is close to zero, this gives a minimum of 0.3 padding
padding = np.max([0.1 * max_absolute_shift, 0.1 * largest_difference, 0.3])
window = (min_shift - padding, max_shift + padding)
return window
[docs]
def guess_spectrum(
isotopes: list[Isotope],
shifts: npt.ArrayLike,
reference_isotope: Isotope,
broadening_ppm: np.ndarray,
frequency_window_ppm: Optional[tuple[float, float]] = None,
broadening_scaling_factor: float = 250.0,
number_frequency_points: int = 500,
) -> tuple[np.ndarray, np.ndarray]:
"""Obtain a guess for a frequency window for a molecule.
Args:
isotopes: List of isotopes, each specified as Isotope(mass, element).
shifts: List of chemical shifts in parts per million (ppm).
reference_isotope: Isotope specified as Isotope(mass, symbol) to define the frequency
(w=gamma*field) of the rotating frame. For example, Isotope(1, 'H').
broadening_ppm: Broadening in ppm.
frequency_window_ppm: Optional upper and lower bound of user
defined energy window in ppm.
broadening_scaling_factor: Scaling factor of broadening_ppm to
include frequencies, where potential multiplet peaks could be.
Defaults to 250.
number_frequency_points: Number of frequency points for the estimated
spectrum. Defaults to 500.
Returns:
Omegas and estimate of correlator.
"""
broadening_ppm *= broadening_scaling_factor
shifts = np.array(shifts)
if frequency_window_ppm is None:
frequency_window_ppm = guess_frequency_window_ppm(isotopes, shifts, reference_isotope)
omegas = np.linspace(frequency_window_ppm[0], frequency_window_ppm[1], number_frequency_points)
correlator = np.zeros((len(shifts), len(omegas)))
for spin_index, shift in enumerate(shifts):
correlator[spin_index] = broadening_ppm[spin_index] / (
(omegas - shift) ** 2 + broadening_ppm[spin_index] ** 2
)
return omegas, correlator
[docs]
def reduce_contributions_to_relevant_spins(
spin_contributions: list[int],
molecule_parameters: NMRParameters,
reference_isotope: Isotope,
solver_settings: NMRSolverSettings,
) -> list[int]:
"""Reduce the list of spin contributions to those associated with the reference isotope.
Args:
spin_contributions: List with indices of spin contributions that are supposed to be
calculated.
molecule_parameters: The molecular isotopes, shifts and J-coupling values.
reference_isotope: Isotope specified as Isotope(mass, symbol) to define the frequency
(w=gamma*field) of the rotating frame. Defaults to Isotope(1, 'H').
solver_settings: NMRSolverSettings object storing information on the cluster and solver
methods. If None, the default solver parameters are used. Defaults to None.
Returns:
When solver_settings.only_relevant_spins is True (default), spin contributions list without
spin indices of a different isotope than the reference_isotope are returned. Otherwise
the unaltered spin contributions.
"""
if solver_settings.only_relevant_spins:
relevant_spin_contributions = []
for index in spin_contributions:
if molecule_parameters.isotopes[index] == reference_isotope:
relevant_spin_contributions.append(index)
return relevant_spin_contributions
else:
return spin_contributions
[docs]
def evaluate_intensity(spin_contributions: np.ndarray) -> np.ndarray:
"""Evaluate intensity from spin contributions.
No additional normalization is performed
Args:
spin_contributions: Spin contributions from which to evaluate the intensity.
Returns:
The intensity.
"""
if spin_contributions.dtype == complex: # correlator corresponds to Green's function
intensity = np.sum(-spin_contributions.imag, axis=0)
else: # correlator corresponds to spectral function
intensity = np.sum(spin_contributions, axis=0)
return intensity
[docs]
def normalize_correlator(
omegas: np.ndarray,
correlator: np.ndarray,
number_relevant_spins: Optional[int] = None,
) -> np.ndarray:
"""Normalize the correlator.
After normalization the correlator integrates to the number of times the reference isotope
appears in the correlator. If correlator is a Green's function the normalize is only
performed with respect to its imaginary part.
Args:
omegas: Frequencies at which the correlator was evaluated.
correlator: Correlator which is supposed to be normalized.
number_relevant_spins: Number of times the reference isotope appears in the molecule.
Returns:
Normalized correlator.
"""
if number_relevant_spins is None:
number_relevant_spins = correlator.shape[0]
intensity = evaluate_intensity(correlator)
normalization = integrate.trapezoid(intensity, omegas) / number_relevant_spins
correlator /= normalization
return correlator
[docs]
def normalize_or_scale(
molecule_parameters: NMRParameters,
calculation_parameters: NMRCalculationParameters,
omegas_ppm: np.ndarray,
correlator: np.ndarray,
) -> np.ndarray:
"""Check if a correlator has to be normalized or scaled depending on user input.
If normalize_spectrum is set to True, the spectrum is normalized with respect to the number
of spins with the same isotope as the reference isotope. Otherwise a scaling with respect to
the Boltzmann distribution is performed or if the complete_nmr_solver was used, nothing is
done.
Args.:
molecule_parameters: The molecular isotopes, shifts, and J-coupling values.
calculation_parameters: Object containing all parameters needed to perform a NMR
correlator function calculation.
omegas_ppm: Frequencies at which to evaluate the correlator in ppm.
correlator: Correlator to normalize or scale.
Returns:
Normalized or scaled correlator.
"""
# Normalize such that the integral evaluates to the number of relevant spins, meaning
# those specified via homo-isotope.
if calculation_parameters.normalize_spectrum:
number_relevant_spins = molecule_parameters.isotopes.count(
calculation_parameters.reference_isotope
)
return normalize_correlator(omegas_ppm, correlator, number_relevant_spins)
if calculation_parameters.solver_settings.solver_str != "complete_nmr_solver":
beta = 1 / (k_boltzmann_J_per_K * calculation_parameters.temperature_K)
beta_hbar = beta * h_planck_J_s
gamma_reference_squared = calculation_parameters.reference_gyromagnetic_ratio**2
scaling_factor = calculation_parameters.field_T * gamma_reference_squared * beta_hbar / 4
# We divide by 4, since we are interested in - Re(<I^x I^y(t)>) but we calculated
# Im(<I^+ I^-(t)>) = Im(<(I^x + i I^y)(I^x(t) - i I^y(t))>)
# = Im(<I^x I^x(t)> + i <I^y I^x(t)> - i <I^x I^y(t))> + <I^y I^y(t)>)
# = Im(<I^x I^x(t)> - i <I^x I^y(t)> - i <I^x I^y(t))> + <I^y I^y(t)>)
# = Im(<I^x I^x(t)>) - Re(<I^x I^y(t)>) - Re(<I^x I^y(t))>) + Im(<I^y I^y(t)>)
# = - 4 Re(<I^x I^y(t)>)
#
# We also multiply by gamma_{ref}^2 since the gyromagnetic ratios in the calculation
# were normalized with respect to the gyromagnetic ratio of the reference isotope.
for spin_index, shift in enumerate(molecule_parameters.shifts):
correlator[spin_index, :] *= scaling_factor * (1 + shift * 1e-6)
return correlator
[docs]
def check_local_su2(cluster_size: int, solver_settings: NMRSolverSettings) -> bool:
"""Check in a simple way, if local SU2 symmetry could be helpful.
This check does not search for groups, but just checks, if local SU2 symmetry
could at all be beneficial. Further checks are done in the actual solver routine.
Args:
cluster_size: Size of the cluster.
solver_settings: NMRSolverSettings object storing information on the clustering and solver
method.
Returns:
If local SU2 should be exploited True, otherwise False.
"""
if cluster_size > solver_settings.max_cluster_size:
return True
elif cluster_size >= solver_settings.min_size_local_su2:
return True
else:
return False
[docs]
def simplify_spin_expression(
expression: fermions.ExpressionSpinful, num_spins: int, threshold: float = 1e-5
) -> fermions.ExpressionSpinful:
"""Simplify a fermions expression into a normalized expression containing only spin operators.
Args.:
expression: Expression to be converted.
num_spins: number of spins in the expression.
threshold: Threshold for the normalization.
Returns:
Simplified expression.
"""
return (
expression.normalize(threshold)
.convert_to_spin_model(set(range(num_spins)))
.sort_descending()
)