Source code for hqs_nmr.spin_dependent_clustering

# Copyright © 2024-2025 HQS Quantum Simulations GmbH. All Rights Reserved.

# LICENSE PLACEHOLDER

"""Functions that can identify for a particular spin the most strongly coupled spins.

Used to construct spin-dependent clusters.
"""

from __future__ import annotations
from typing import TYPE_CHECKING

import numpy as np

if TYPE_CHECKING:
    from hqs_nmr.datatypes import NMRSolverSettings

from lattice_functions.nmr_tools import (
    fiedler_partitioning,
)


[docs] def get_weight_matrix(hJp: np.ndarray, Jz: np.ndarray, weight_offset: float) -> np.ndarray: r"""Create weight matrix according to perturbation theory. .. math:: w_{x,y} = \frac{|J_{x,y}|^2}{|J^z_x - J^z_y| + d} Args: hJp: J-coupling matrix. Jz: Jz vector. weight_offset: Small factor to avoid division by zero. Returns: Matrix with weights from perturbation theory. """ weights = np.zeros_like(hJp) for x in range(0, Jz.size): for y in range(0, Jz.size): denominator = np.abs(Jz[x] - Jz[y]) + weight_offset if denominator < 1e-10: raise ValueError( "Choose a weight offset unequal to zero to avoid division by zero." ) weights[x, y] = hJp[x, y] ** 2 / denominator return weights
[docs] def spin_dependent_cluster_finder( spin_index: int, weights: np.ndarray, J_coupling: np.ndarray, max_cluster_size: int, minimize_cluster: bool = False, ) -> list[int]: r"""For one spin return sorted list with indices of spins its strongest coupled with. Args: spin_index: Index of the spin for which to find the coupled spins. weights: Weight matrix of the effective spin system. J_coupling: Matrix with J-coupling values. max_cluster_size: Maximum number of spins the spin is allowed to couple to. minimize_cluster: If True, it is checked, if independent partitions can be identified in the cluster. Defaults to False. Returns: Integer array with sorted indices that make up the cluster for the spin. """ idx = np.argsort(weights[spin_index, :]) idx = np.delete(idx, np.where(idx == spin_index)) indices = np.zeros(max_cluster_size, dtype=int) indices[0] = spin_index indices[1:] = np.flip(idx[-(max_cluster_size - 1) :]) if minimize_cluster: # check if there are independent partitions in the molecule fiedler_partitions = fiedler_partitioning(J_coupling[indices, :][:, indices], verbose=0) # only keep partition with spin_index for partition in fiedler_partitions: if np.where(indices == spin_index) in partition: indices = indices[partition] break sorted_indices = [int(index) for index in sorted(indices)] return sorted_indices
[docs] def spin_dependent_cluster_list( weights: np.ndarray, J_coupling: np.ndarray, max_cluster_size: int, number_spins: int, verbose: int = 0, minimize_cluster: bool = False, ) -> tuple[list, list]: r"""Identify clusters for each spin. Args: weights: Weight matrix of the effective spin system. J_coupling: Matrix with J-coupling values. max_cluster_size: Maximum number of spins the spin is allowed to couple to. number_spins: Number of spin half in the full system. verbose: Verbosity level of output. minimize_cluster: If True, it is checked, if partitions can be identified in the cluster. Defaults to False. Returns: List of lists of spins that are associated with identical clusters. List of integer arrays with sorted indices that make up the clusters. """ effective_max_cluster_size = min(number_spins, max_cluster_size) cluster_list: list[list[int]] = [] spins_with_the_same_cluster: list[list[int]] = [] for spin_index in range(number_spins): new_cluster = spin_dependent_cluster_finder( spin_index, weights, J_coupling, effective_max_cluster_size, minimize_cluster, ) if new_cluster in cluster_list: index_new_cluster = cluster_list.index(new_cluster) spins_with_the_same_cluster[index_new_cluster].append(spin_index) else: cluster_list.append(new_cluster) spins_with_the_same_cluster.append([spin_index]) if verbose > 0: for cluster_index, cluster in enumerate(cluster_list): print( "cluster for spin(s)", spins_with_the_same_cluster[cluster_index], ": ", cluster, ) return spins_with_the_same_cluster, cluster_list
[docs] def identify_spin_dependent_clusters( Jz: np.ndarray, hJp: np.ndarray, solver_settings: NMRSolverSettings ) -> tuple[list, list]: """Identify for each spin the best cluster and group spins with the same cluster together. Args: Jz: Array with S^z terms. dim: (number_spins). hJp: Array with the S^+ S^- coupling. dim: (number_spins x number_spins). solver_settings: NMRSolverSettings object containing information on the cluster and solver method. Returns: List of lists of spins that are associated with identical clusters. List of integer arrays with sorted indices that make up the clusters. """ # cluster Hamiltonian number_spins = Jz.size full_cluster = list(range(number_spins)) if (number_spins <= solver_settings.max_cluster_size) or solver_settings.solve_exactly: return [full_cluster], [full_cluster] weights = get_weight_matrix(hJp, Jz, solver_settings.weight_offset) return spin_dependent_cluster_list( weights, hJp, solver_settings.max_cluster_size, number_spins, verbose=solver_settings.verbose, minimize_cluster=True, )