# Copyright © 2023-2025 HQS Quantum Simulations GmbH. All Rights Reserved.
"""A collection of functions related to constructing the system.
This module also includes functions taking care of the bookkeeping of all the quantum numbers and
indices when the local SU2 symmetries should be taken into account.
"""
from __future__ import annotations
import numpy as np
from typing import Optional, cast, TYPE_CHECKING
import copy
from lattice_functions import Fermions as fermions
if TYPE_CHECKING:
from hqs_nmr.datatypes import NMRSolverSettings
from numpy.typing import NDArray
# Specify type for sphinx api documentation to work properly.
numpy_int = np.int_
[docs]
def get_operator_list(
num_spins: int, gyromagnetic_ratios: np.ndarray
) -> list[fermions.ExpressionSpinful]:
"""Get list of site-resolved operators.
Args:
num_spins: Total number of spins.
gyromagnetic_ratios: Array of the gyromagnetic factors per site.
Returns:
List with operators defined as fermion expressions.
"""
list_operators = []
for spin_index in range(num_spins):
spin_operator = fermions.ExpressionSpinful(
0.0,
gyromagnetic_ratios[spin_index] * fermions.FermionSpinful(spin_index, "S^-"),
)
list_operators.append(spin_operator)
return list_operators
[docs]
def get_operator_sum(
num_spins: int, gyromagnetic_ratios: np.ndarray
) -> fermions.ExpressionSpinful:
"""Get sum of operators.
Args:
num_spins: Total number of spins.
gyromagnetic_ratios: Array of the gyromagnetic factors per site.
Returns:
Sum of operators defined as fermion expressions.
"""
operator_sum = fermions.ExpressionSpinful()
for spin_index in range(num_spins):
operator_sum += gyromagnetic_ratios[spin_index] * fermions.FermionSpinful(
spin_index, "S^-"
)
return operator_sum
[docs]
class EffectiveSpinSystem:
"""Class that defines an effective spin system.
An effective spin system is a representation of a NMR Hamiltonian, in which information on
symmetry groups can be stored. We define a symmetry group as a set of spins that couple
symmetrically to the rest of the system. These can be represented as one spin of a higher
order spin representation allowing us to exploit local SU2 symmetry. This leads to a reduced
representation of the J-coupling matrix and the magnetic field terms.
Note: In order to exploit local SU2 symmetries hJz and hJp have to be the same matrices,
hence we only save one matrix here called J_coupling.
"""
[docs]
def __init__(
self, solver_settings: NMRSolverSettings, J_coupling: np.ndarray, Jz: np.ndarray
) -> None: # NOSONAR
"""Create effective spin system.
Args:
solver_settings: NMRSolverSettings object storing information on group finding.
J_coupling: Matrix with J-coupling terms.
Jz: Vector with Jz terms.
"""
# Save non-reduced attributes.
self.J_coupling: np.ndarray = J_coupling
self.Jz: np.ndarray = Jz
self.size: int = self.Jz.size
self.indices: NDArray[numpy_int] = np.linspace(0, self.size - 1, self.size, dtype=int)
# Initialize the reduced attributes with the same values as the non-reduced
# attributes. Will be overwritten, if groups are identified.
self.reduced_J_coupling: np.ndarray = self.J_coupling
self.reduced_Jz: np.ndarray = self.Jz
self.reduced_size: int = self.size
self.reduced_indices: NDArray[numpy_int] = self.indices
# Initially all spins are spin 1/2. We save the spin representation multiplied
# by a factor 2 for the C++ interface. If groups are identified this is overwritten.
self.max_representations: NDArray[numpy_int] = np.ones(self.size, dtype=int)
# Create default attributes storing information on groups.
self.group_indices: list[NDArray[numpy_int]] = []
self.group_sizes: list[int] = []
self.groups: list[Group] = []
self.J_coupling_within_groups: list[float] = []
self.number_of_groups: int = 0
# Check if there are groups and if so overwrite the corresponding attributes.
groups = identify_symmetry_groups(
J_coupling,
Jz,
tolerance_couplings_percent=solver_settings.tolerance_couplings,
tolerance_shifts_percent=solver_settings.tolerance_shifts,
verbose=solver_settings.verbose,
)
self.set_groups(groups)
[docs]
def copy(self) -> EffectiveSpinSystem:
"""Create identical copy of the effective spin system.
Returns:
Copy of the effective spin system.
"""
return copy.copy(self)
[docs]
def set_groups(self, group_list: list[NDArray[numpy_int]]) -> None:
"""Set the groups in the effective spin system.
This function also automatically creates a reduced version of the J coupling matrix as
well as the Jz terms, where the groups are represented by a single site of higher spin
representation and are ordered to the end of the system.
Args:
group_list: List of lists with the indices of the individual groups in the effective
spin system.
"""
if not group_list:
return
for group in group_list:
group_splitted = split_group(self.J_coupling, group)
self.groups.append(Group(group_splitted, self))
self.group_indices = group_list
for group in group_list:
self.group_sizes.append(len(group))
(
self.reduced_J_coupling,
self.reduced_Jz,
self.J_coupling_within_groups,
self.reduced_indices,
) = get_symmetrized_matrices(self.J_coupling, self.Jz, self.group_indices)
self.number_of_groups = len(self.groups)
self.reduced_size = self.reduced_Jz.size
self.max_representations = np.ones(self.reduced_size, dtype=int)
self.max_representations[-len(self.group_sizes) :] = np.array(self.group_sizes, dtype=int)
[docs]
def identify_effective_spin_index(self, spin_index: int) -> int:
"""Get effective spin index as stored in the effective spin system.
Args:
spin_index: Index for which to return the effective spin index.
Returns:
Effective spin index.
"""
for group in self.group_indices:
if spin_index in group:
spin_index = group[0]
break
effective_spin_index = np.where(self.reduced_indices == spin_index)[0]
return cast(int, effective_spin_index[0])
[docs]
def identify_effective_spin_contribution_indices(
self, spin_contribution_indices: list[int], broadening: np.ndarray
) -> tuple[list[int], np.ndarray]:
"""Get effective spin contribution indices as stored in the effective spin system.
Args:
spin_contribution_indices: Indices of the spins to analyze.
broadening: Explicit spin-dependent broadening of the peaks.
Returns:
A tuple, where the first element is a list with effective spin contribution indices
and the second a vector with the associated broadenings.
"""
effective_spin_contribution_indices = []
broadening_effective_spin_system = []
for n, spin_index in enumerate(spin_contribution_indices):
effective_spin_index = self.identify_effective_spin_index(spin_index)
if effective_spin_index not in effective_spin_contribution_indices:
effective_spin_contribution_indices.append(effective_spin_index)
broadening_effective_spin_system.append(broadening[n])
return effective_spin_contribution_indices, np.array(broadening_effective_spin_system)
[docs]
def num_spin_half(self, spin_index: int) -> int:
"""Return number of spin half a spin is made up from.
The spin is identified by its index in the non-reduced ordering of the spin indices.
Args:
spin_index: Index of the spin to analyze. Spin index has to be taken from original
ordering.
Returns:
Number of spin half that make up a spin.
"""
num_spin_half = 1
for group in self.group_indices:
if spin_index in group:
num_spin_half = len(group)
break
return num_spin_half
[docs]
class HigherSpinState:
"""Class to store information associated with a higher spin state.
Each spin state consists of an overall quantum number J, the J_coupling
value describing the coupling of the subparts of the spin and either a
list of higher spins states the spin state is made up of (typically just two spins)
or the number of spin half that make up the higher spin.
"""
[docs]
def __init__(
self,
J: float,
J_coupling: float,
list_higher_spins: Optional[list[HigherSpinState]] = None,
number_spin_half: Optional[int] = None,
) -> None:
"""Create HigherSpinState.
Args:
J : J quantum number.
J_coupling: J coupling of the inner constituents of the spin.
list_higher_spins: List of higher spins states the spin
state is created from. Defaults to None.
number_spin_half: Number of spin 1/2 the higher spin state is created
from. Defaults to None.
"""
self.J = J
self.J_coupling = J_coupling
self.list_higher_spins = list_higher_spins
self.number_spin_half = number_spin_half
[docs]
def info(self) -> None:
"""Prints all information of the spin state."""
print("J: ", self.J)
print("J coupling: ", self.J_coupling)
print("higher spins: ", self.list_higher_spins)
print("number spin half: ", self.number_spin_half)
[docs]
class Group:
"""Class to store all information on one group."""
[docs]
def __init__(
self,
subgroup_list: list[NDArray[numpy_int]],
effective_spin_system: EffectiveSpinSystem,
) -> None:
"""Create object representing on group.
Args:
subgroup_list: List with lists of subgroup indices.
effective_spin_system: Effective spin system the group is in.
"""
self.subgroups: list[NDArray[numpy_int]] = subgroup_list
self.number_subgroups = len(subgroup_list)
self.subgroup_sizes: list[int] = [len(subgroup) for subgroup in subgroup_list]
self.intra_subgroup_coupling: list[float] = []
for i in range(self.number_subgroups):
self.intra_subgroup_coupling.append(
effective_spin_system.reduced_J_coupling[subgroup_list[i][0], subgroup_list[i][1]]
)
# FIXME: This only works for "real world" examples, meaning the subgroups should be the
# same. In principle however one could construct a system, where there are different kinds
# of subgroups forming a symmetry group (eg. CH2 and two CH3 groups). For this to work
# though the chemical shifts need to be the same, which they should not be in a real
# example.
#
# To cover this artificial case we need to make sure, that the order of the subgroups is
# such, that in the example the CH2 group would be the last block. In this case problematic
# terms that appear otherwise cancel. I need to think about how to generalize this though,
# so for now I will leave it, as it should not cause issues for our cases.
self.inter_subgroup_coupling: list[float] = []
for i in range(self.number_subgroups):
self.inter_subgroup_coupling.append(
effective_spin_system.reduced_J_coupling[subgroup_list[0][0], subgroup_list[i][0]]
)
self.j_sectors_subgroups: list[list[float]] = [
get_J_sectors(subgroup_size) for subgroup_size in self.subgroup_sizes
]
self.list_elementary_spin_states: list[list[HigherSpinState]] = []
for i, subgroup in enumerate(self.j_sectors_subgroups):
list_elementary_spin_states_subgroup = [
HigherSpinState(
j,
self.intra_subgroup_coupling[i],
number_spin_half=self.subgroup_sizes[i],
)
for j in subgroup
]
self.list_elementary_spin_states.append(list_elementary_spin_states_subgroup)
self.coupled_spin_states: list[HigherSpinState] = combine_n_subgroups(
self.list_elementary_spin_states, self.inter_subgroup_coupling
)
[docs]
def identify_symmetry_groups( # noqa: C901
J_coupling: np.ndarray,
Jz: np.ndarray,
tolerance_shifts_percent: float = 1.0,
tolerance_couplings_percent: float = 1.0,
verbose: int = 0,
) -> list[NDArray[numpy_int]]:
"""Identify groups of spins, that couple in the same way to the rest of the system.
We first determine candidates for groups, by grouping spins with similar Jz values (meaning
they differ by less then tolerance_shifts) together.
Then we remove those spins from the candidate list, that are not strong coupling within the
group.
Finally we compare the coupling of the spins to the rest of the system using
tolerance_couplings. Those that are coupling in the same way are assumed to be a group.
Args:
J_coupling: Matrix with the spin-spin coupling.
Jz: Vector with local fields coupling to S^z.
tolerance_shifts_percent: Tolerance in Jz values (in percent) that is allowed for spins to
be grouped together. Defaults to 1.0.
tolerance_couplings_percent: Tolerance in J coupling values (in percent) that is allowed
for spins to be grouped together. Defaults to 1.0.
verbose: Verbosity level of the calculation. Defaults to zero.
Returns:
A list of arrays containing the groups.
"""
tolerance_couplings = np.max(np.abs(J_coupling)) * (tolerance_couplings_percent / 100)
tolerance_shifts = np.max(np.abs(Jz)) * (tolerance_shifts_percent / 100)
nspins_total = Jz.size
if verbose > 1:
print(f"Start symmetry group check of {nspins_total} spins.")
idx = np.argsort(Jz)
Jz_sorted = Jz[idx]
if verbose > 1:
print(f"Jz sorted: {Jz[idx]}")
group_list = []
r1 = 0
while r1 < nspins_total - 1:
# identify a candidate group which is one with similar Jz values
for r2 in range(r1 + 1, nspins_total + 1):
# In this case just the rest of the effective spin system is taken, but Jz_sorted[r2]
# would fail.
if r2 == nspins_total:
break
elif Jz_sorted[r2] - Jz_sorted[r1] > tolerance_shifts:
break
# if candidate group would be of size one skip it
if (r2 - r1) == 1:
r1 = r2
continue
# candidate indices and corresponding J coupling
candidate_idx = idx[r1:r2]
J_coupling_candidate = J_coupling[candidate_idx, :][
:, candidate_idx
] # JJ coupling of candidate group
if verbose > 1:
print(f"Candidate group {candidate_idx} {r2 - r1}: {Jz[candidate_idx]}")
print("Coupling:", J_coupling_candidate)
# Todo: shortcuts for smaller group -> don't think this is necessary for now
if r2 - r1 > 2:
# Restrict candidates to strongly coupled ones
max_J = np.tril(J_coupling_candidate).max()
subset = np.unique(
np.where(np.abs(np.tril(J_coupling_candidate) - max_J) < tolerance_couplings)
)
subset_ortho = []
# add the once we excluded before to the end
for index in range(len(candidate_idx)):
if index not in subset:
subset_ortho.append(index)
idx1 = np.hstack((subset, np.array(subset_ortho, dtype=subset.dtype)))
if verbose > 1:
print(f"Revised idx: {idx1}")
# Create new candidate_idx just with the once in the identified subset and reorder idx
# accordingly.
candidate_idx = idx[r1:r2][subset]
idx[r1:r2] = idx[r1:r2][idx1]
r2 = r1 + len(subset)
# narrow down the revised candidates
J_coupling_candidate = J_coupling[candidate_idx, :][:, candidate_idx]
if verbose > 1:
print(f"Revised J coupling:\n{J_coupling_candidate}")
# ordering of candidate_idx[:,2], according to coupling strength to current spin
idx_new_sort = np.argsort(
np.abs(J_coupling_candidate[0, 2:] - J_coupling_candidate[0, 1])
)
idx[(r1 + 2) : r2] = candidate_idx[2:][idx_new_sort] # reorder current version
candidate_idx = idx[r1:r2]
# Up to here we still include all "symmetric" groups meaning for example the two methyl
# groups in C3H8 now we distinguish them by checking the coupling to the rest of the
# system.
ortho_candidate_idx = []
for i in range(nspins_total):
if i not in candidate_idx:
ortho_candidate_idx.append(i)
if len(ortho_candidate_idx) > 0:
J_outside = np.zeros((len(candidate_idx), len(ortho_candidate_idx)))
J_outside[:, :] = J_coupling[candidate_idx, :][
:, np.array(ortho_candidate_idx, dtype=int)
]
if verbose > 1:
print(f"J_outside\n{J_outside}")
idx_reorder_outside = np.argsort(J_outside[:, 0])
J_outside[:, :] = J_outside[idx_reorder_outside, :]
candidate_idx = candidate_idx[idx_reorder_outside]
idx[r1:r2] = candidate_idx
if verbose > 1:
print(f"after resort: J_outside\n{J_outside}")
d = 1
for index in range(1, len(candidate_idx)):
# For two identical groups the coupling will just be shifted leading to a max value
# larger than tolerance_couplings.
if np.max(np.abs(J_outside[0, :] - J_outside[index, :])) >= tolerance_couplings:
break
d = d + 1
else:
d = len(candidate_idx)
if d > 1:
if verbose > 1:
print("identified group:", candidate_idx[0:d])
group_list.append(candidate_idx[0:d])
r1 = r1 + d # jump over the group indices in the next iteration
group_list_ordered = []
for group in group_list:
idx = np.argsort(group)
group_list_ordered.append(np.array(group)[idx])
return group_list_ordered
[docs]
def split_group(J_coupling: np.ndarray, group_indices: np.ndarray) -> list[NDArray[numpy_int]]:
"""Split groups consisting of multiple symmetric subgroups into subgroups.
Example: In propane the two methyl groups are identified as one group up to now,
but we split them here.
Args:
J_coupling: Array with J coupling matrix.
group_indices: List with the indices of one group.
Returns:
List of lists, where the inner lists contain the indices of the subgroups.
"""
tolerance = 1e-2 # what should we take here? Probably the same as in the group identifier
J_coupling_temp = np.abs(J_coupling[group_indices, :][:, group_indices])
splits = True
subgroup_list = []
while splits:
subgroup_idx = [0]
index_max = np.argmax(abs(J_coupling_temp[0, :]))
J_row0_max = J_coupling_temp[0, index_max]
# identify subgroup
for i in range(1, J_coupling_temp.shape[0]):
if np.abs(J_row0_max - J_coupling_temp[0][i]) < tolerance:
subgroup_idx.append(i)
# create list with rest of the indices
subgroup_idx_ortho = []
for i in range(J_coupling_temp.shape[0]):
if i not in subgroup_idx:
subgroup_idx_ortho.append(i)
subgroup_list.append(group_indices[subgroup_idx])
if len(subgroup_idx_ortho) == 0:
splits = False
J_coupling_temp = J_coupling_temp[subgroup_idx_ortho, :][:, subgroup_idx_ortho]
group_indices = group_indices[subgroup_idx_ortho]
return subgroup_list
[docs]
def get_symmetrized_matrices(
J_coupling: np.ndarray, Jz: np.ndarray, grouplist: list[NDArray[numpy_int]]
) -> tuple[np.ndarray, np.ndarray, list[float], np.ndarray]:
"""Reorder and simplify J_coupling and Jz according to grouplist.
Args:
J_coupling: Matrix with J couplings.
Jz: Matrix with magnetic fields.
grouplist: List of lists containing the indices of the individual groups.
Returns:
Reduced and reordered J_coupling, Jz and list with intra group couplings
"""
J_group_list = []
joined_list = []
for group in grouplist:
J_group_list.append(J_coupling[group[0], group[0] + 1])
for g in group:
joined_list.append(g)
idx = []
for i in range(Jz.shape[0]):
if i not in joined_list:
idx.append(i)
for group in grouplist:
idx.append(group[0])
reduced_J_coupling = J_coupling[idx, :][:, idx]
reduced_Jz = Jz[idx]
return (
reduced_J_coupling,
reduced_Jz,
J_group_list,
np.array(idx),
) # [:(len_system + num_groups)]
[docs]
def get_J_sectors(M: int) -> list[float]:
"""Get the different S^2 sectors when combining multiple spins with equal S^2 quantum numbers.
Args:
M: Number of sites.
"""
j_sectors = [1 / 2]
while M > 1:
j_sectors_new = []
for j in j_sectors:
if j == 0:
j_sectors_new.append(1 / 2)
else:
j_sectors_new.append(j - 1 / 2)
j_sectors_new.append(j + 1 / 2)
j_sectors = j_sectors_new
M -= 1
return j_sectors
[docs]
def combine_two_spins(
spin1: HigherSpinState, spin2: HigherSpinState, J_coupling: float
) -> list[HigherSpinState]:
"""Combines two higher spins states to create a list of new higher spin states.
Args:
spin1: First higher spin state.
spin2: Second higher spin state.
J_coupling: Coupling of the two spins
Returns:
List of combined higher spin states.
"""
J_combined = np.abs(spin1.J - spin2.J)
J_max = spin1.J + spin2.J
list_combined_spins: list[HigherSpinState] = []
while J_combined <= J_max:
list_combined_spins.append(HigherSpinState(J_combined, J_coupling, [spin1, spin2]))
J_combined += 1
return list_combined_spins
[docs]
def combine_two_subgroups(
subgroup1: list[HigherSpinState], subgroup2: list[HigherSpinState], J_inter: float
) -> list[HigherSpinState]:
"""Take all higher spin states for two subgroups and combine them in all combinations.
Args:
subgroup1: List of all spin states in subgroup 1
subgroup2: List of all spin states in subgroup 2
J_inter: Coupling constant of the two subgroups.
Returns:
List of combined spin states.
"""
combined_subgroups: list[HigherSpinState] = []
for spin1 in subgroup1:
for spin2 in subgroup2:
list_combined_spins = combine_two_spins(spin1, spin2, J_inter)
combined_subgroups.extend(list_combined_spins)
return combined_subgroups
[docs]
def combine_n_subgroups(
list_subgroups: list[list[HigherSpinState]], J_inter: list[float]
) -> list[HigherSpinState]:
"""Take all higher spin states for multiple subgroups and combine them in all combinations.
Args:
list_subgroups: List with lists of all spin states in the subgroups.
J_inter: List of coupling constants of the subgroups.
Returns:
List of combined spin states.
"""
while len(list_subgroups) > 1:
combined_subgroups = combine_two_subgroups(
list_subgroups[0], list_subgroups[1], J_inter[0]
)
list_subgroups = [combined_subgroups] + list_subgroups[2:]
J_inter = J_inter[1:]
return list_subgroups[0]
[docs]
def S2_term_spin_half(j_total: float, number_spin_half: Optional[int]) -> float:
"""Calculates the expectation value to the operator S_total^2 - S_1^2 - S_2^2.
Applies to a vector in the basis | J, M, j_1, j_2 >.
Args:
j_total: Total spin.
number_spin_half: Number of spin half the spin is created from.
Returns.:
Expectation value.
"""
if number_spin_half is None:
number_spin_half = 1
return j_total * (j_total + 1) - number_spin_half * 0.5 * (0.5 + 1)
[docs]
def S2_term_combined_higher_spins(j_total: float, j_list: list[HigherSpinState]) -> float:
"""Calculates the expectation value to the operator S_total^2 - S_1^2 - S_2^2.
Applies to a vector in the basis | J, M, j_1, j_2 >.
Args:
j_total: Total spin.
j_list: List with spin representations of original sites.
Returns.:
Expectation value.
"""
J = j_total * (j_total + 1)
for j in j_list:
J -= j.J * (j.J + 1)
return J
[docs]
def S2_term_higher_spin(spin: HigherSpinState, S2_term: float = 0) -> float:
"""Calculates the expectation value to the operator sum J S_i S_j.
Note that the expectation value only contains terms where the operator acts on symmetric
groups.
Args:
spin: Higher spin state.
S2_term: Expectation value. Defaults to zero.
Returns.:
Expectation value.
"""
if spin.list_higher_spins is not None:
S2_term += spin.J_coupling * S2_term_combined_higher_spins(spin.J, spin.list_higher_spins)
S2_term = S2_term_higher_spin(spin.list_higher_spins[0], S2_term)
S2_term = S2_term_higher_spin(spin.list_higher_spins[1], S2_term)
else:
S2_term += spin.J_coupling * S2_term_spin_half(spin.J, spin.number_spin_half)
return S2_term