Source code for hqs_nmr.solver.implementations.complete_solver

# Copyright © 2025 HQS Quantum Simulations GmbH. All Rights Reserved.


"""A NMR solver that takes into account the full initial density matrix."""

from typing import Any

import numpy as np

from hqs_nmr.datatypes import NMRCalculationParameters
from hqs_nmr import conversion, hamiltonian_tools

from struqture_py.spins import SpinHamiltonianSystem

from hqs_quantum_solver.spins import (
    VectorSpace,
    Operator,
    spin_x,
    isotropic_interaction,
    magnetic_field_z,
)


[docs] def complete_nmr_solver( hamiltonian: SpinHamiltonianSystem, normalized_gyromagnetic_ratios: np.ndarray, omegas: np.ndarray, eta: np.ndarray, spin_contribution_indices: list[int], calculation_parameters: NMRCalculationParameters, **kwargs: dict[str, Any], # noqa: ARG001 ) -> np.ndarray: r"""A complete NMR solver without approximations. Evaluates a correlator function of the form: \\sum_n \\frac{\\bra{n} \\gamma_l I^x_l \\ket{m} \\bra{m} P \\rho P^\\dagger \\ket{n}}{ {\\omega + E_n - E_m + i \\eta} Where P is a pi / 2 pulse and rho a density matrix given by the Boltzmann distribution. Args: hamiltonian: Struqture spin Hamiltonian. normalized_gyromagnetic_ratios: Array of the gyromagnetic factors per site, normalized with respect to the reference isotope. omegas: Desired frequencies. eta: Explicit spin-dependent broadening of the peaks. spin_contribution_indices: List of indices l of I^+_l for which to evaluate the correlator. calculation_parameters: Object storing all calculation parameters including solver-specific settings. kwargs: Catch all for general interface. Returns: np.ndarray[tuple[Any, Any], np.dtype[np.floating]]: The spectrum. First index = spin #, second index = time index. """ num_spins = hamiltonian.number_spins() dim = 2**num_spins # Construct and diagonalize Hamiltonian in rotating frame. Jz, hJ, _ = hamiltonian_tools.extract_coupling(hamiltonian) vec_space = VectorSpace(sites=num_spins, total_spin_z=(num_spins % 2, 2)) hamiltonian_rotating = Operator( isotropic_interaction(hJ) + magnetic_field_z(coef=Jz), domain=vec_space ) eigenvalues, eigenvectors = np.linalg.eigh(hamiltonian_rotating.todense()) # Obtain energy differences for denominator. energy_differences = np.outer(eigenvalues, np.ones(dim)) - np.outer(np.ones(dim), eigenvalues) # Construct time evolution operator of hard pi / 2 pulse. Use eigenbasis for efficiency. sum_spin_x = Operator(spin_x(coef=np.ones(num_spins)), domain=vec_space).todense() eigenvalues_pulse, eigenvectors_pulse = np.linalg.eigh(sum_spin_x) pulse = ( eigenvectors_pulse @ (np.exp(-1j * (np.pi / 2) * eigenvalues_pulse) * eigenvectors_pulse.conjugate()).T ) # Calculate all vectors: <n| pulse bra_pulse = eigenvectors.T @ pulse # Obtain Boltzmann distribution for initial density matrix. The Hamiltonian has to be defined # in the laboratory frame of reference here. Jz_laboratory = ( Jz + calculation_parameters.field_T * (calculation_parameters.gyromagnetic_ratios[calculation_parameters.reference_isotope]) ) beta = 1 / (calculation_parameters.temperature_K * conversion.k_boltzmann_J_per_K) beta_hbar = beta * conversion.h_planck_J_s hamiltonian_laboratory = Operator( beta_hbar * (isotropic_interaction(hJ) + magnetic_field_z(coef=Jz_laboratory)), domain=vec_space, ) eigenvalues_laboratory, eigenvectors_laboratory = np.linalg.eigh( hamiltonian_laboratory.todense() ) boltzmann_weights = np.exp(-(eigenvalues_laboratory - eigenvalues_laboratory[0])) rho = eigenvectors_laboratory @ (boltzmann_weights * eigenvectors_laboratory.conjugate()).T Z = np.sum(boltzmann_weights) # Time evolution of initial density matrix under the pulse. pulse_rho_pulse = bra_pulse @ rho @ bra_pulse.conjugate().T # Precalculate the numerator of the final expression for each spin individually. # Also create a filter to remove small matrix elements. list_numerator = [] list_filter = [] for spin_index in spin_contribution_indices: sx = Operator( normalized_gyromagnetic_ratios[spin_index] * spin_x(site=spin_index), domain=vec_space, ) # <n| S^x |m><m| pulse_rho_pulse |n> numerator = ((eigenvectors.T @ sx @ eigenvectors) * pulse_rho_pulse.T).flatten() index_filter = np.where( abs(numerator) / np.max(abs(numerator)) > calculation_parameters.solver_settings.threshold_matrix_elements )[0] list_numerator.append(numerator[index_filter]) list_filter.append(index_filter) # Evaluate the correlator. correlator_function = np.zeros((len(spin_contribution_indices), omegas.size), dtype=complex) for w, omega in enumerate(omegas): for i, _ in enumerate(spin_contribution_indices): denominator = (omega + 1j * eta[i] + energy_differences).flatten() correlator_function[i, w] = np.sum(list_numerator[i] / denominator[list_filter[i]]) ## we calculate <\gamma_l S^x_l \rho(t)> correlator_function *= calculation_parameters.gyromagnetic_ratios[ calculation_parameters.reference_isotope ] ## Return result. if calculation_parameters.solver_settings.calc_greens_function: # The factor 1j is necessary for this result to be compatible with other functions # concerning Green's function return (-1j * np.pi) * correlator_function / Z else: return correlator_function.real / Z