Source code for hqs_nmr.solver.implementations.Sz_conserved_routines

# Copyright © 2022-2025 HQS Quantum Simulations GmbH. All Rights Reserved.

"""Routines to calculate a spectrum, if only the Sz conservation is taken into account."""

from __future__ import annotations

from typing import Union, TYPE_CHECKING

import numpy as np
from scipy.linalg import eigh
from scipy.sparse import csr_matrix
from scipy.sparse.linalg import ArpackNoConvergence, eigsh

from lattice_functions.fci import (
    StateMap,
    csr_matrix_eigen,
    get_spin_triplets,
    get_spin_triplets_from_expression,
)
from lattice_functions.nmr_tools import (
    calculate_spectral_function_for_nmr_spin_dependent,
    calculate_greens_function_for_nmr_spin_dependent,
)

if TYPE_CHECKING:
    from lattice_functions import Fermions as fermions


[docs] def determine_energy_shift( Jz: np.ndarray, hJz: np.ndarray, hJp: np.ndarray, beta: float = 0.0 ) -> float: """Determine the energy shift corresponding to the overall groundstate energy. Note that the ground state energy is only calculated if beta is larger than zero. Args: Jz: Array with S^z terms. dim: (number_spins). hJz: Array with the S^z S^z coupling. dim: (number_spins x number_spins). hJp: Array with the S^+ S^- coupling. dim: (number_spins x number_spins). beta: Inverse temperature. Defaults to 0.0. Returns: The ground state energy if beta > 0, otherwise zero. """ if beta > 1e-12: return calc_groundstate_energy(Jz, hJz, hJp) else: return 0.0
[docs] def calc_groundstate_energy(Jz: np.ndarray, hJz: np.ndarray, hJp: np.ndarray) -> float: r"""Calculate ground state by iterating over all Sz sectors. Args: Jz: Array with S^z terms. dim: (number_spins). hJz: Array with the S^z S^z coupling. dim: (number_spins x number_spins). hJp: Array with the S^+ S^- coupling. dim: (number_spins x number_spins). Returns: The ground state energy. """ nspins_total = Jz.shape[0] statemap = StateMap() statemap.init_spins(nspins_total, -nspins_total, 0) current_lowest_energy = lowest_energy_in_Sz_sector(statemap, Jz, hJz, hJp) # Obtain the eigenvalues and eigenvectors of the spin Hamiltonian. for Sz in range(-nspins_total, nspins_total, 2): # state map of the Hamiltonian in the current iteration statemap.init_spins(nspins_total, Sz + 2, 0) possible_lowest_energy = lowest_energy_in_Sz_sector(statemap, Jz, hJz, hJp) if possible_lowest_energy < current_lowest_energy: current_lowest_energy = possible_lowest_energy return current_lowest_energy
[docs] def lowest_energy_in_Sz_sector( statemap: StateMap, Jz: np.ndarray, hJz: np.ndarray, hJp: np.ndarray ) -> float: r"""Builds the Hamiltonian in one Sz sector and finds the lowest eigenvalue. Args: statemap: State map of the Sz sector. Jz: Array with S^z terms. dim: (number_spins). hJz: Array with the S^z S^z coupling. dim: (number_spins x number_spins). hJp: Array with the S^+ S^- coupling. dim: (number_spins x number_spins). Returns: Returns the smallest algebraic eigenvalue. """ triplets = get_spin_triplets( Jz=Jz, Jp=np.zeros_like(Jz), Jm=np.zeros_like(Jz), hJz=hJz, hJp=0.5 * hJp, hJd=np.zeros_like(hJz), sm=statemap, sm_to=statemap, ) hamiltonian_in_Sz_sector = csr_matrix( (triplets.values(), (triplets.cols(), triplets.rows())), shape=[statemap.size(), statemap.size()], ) if statemap.size() == 1: lowest_energy = hamiltonian_in_Sz_sector.todense() else: try: lowest_energy = eigsh( hamiltonian_in_Sz_sector, which="SA", k=1, return_eigenvectors=False ) except ArpackNoConvergence: energies = eigh( hamiltonian_in_Sz_sector.todense(), eigvals_only=True, subset_by_index=[0, 0], ) lowest_energy = energies[0] return lowest_energy
[docs] def set_I_minus_operator( J_minus: np.ndarray, statemap: StateMap, statemap_minus: StateMap ) -> csr_matrix_eigen: r"""Sets the operator I^-. Args: J_minus: Array with I^- terms. dim: (number_spins). statemap: State map of the current Sz sector. statemap_minus: State map of the Sz sector after applying I^-. Returns: Returns the I^- operator applied to the sites specified in J_minus. """ nspins_total = J_minus.size op_I_minus = csr_matrix_eigen(statemap_minus.size(), statemap.size()) op_I_minus.set( Jz=np.zeros(nspins_total), Jp=np.zeros(nspins_total), Jm=J_minus, hJz=np.zeros((nspins_total, nspins_total)), hJp=np.zeros((nspins_total, nspins_total)), hJd=np.zeros((nspins_total, nspins_total)), sm=statemap, sm_to=statemap_minus, ) return op_I_minus
[docs] def diagonalize_Sz_conserved_hamiltonian( statemap: StateMap, Jz: np.ndarray, hJz: np.ndarray, hJp: np.ndarray ) -> tuple[np.ndarray, np.ndarray]: r"""Builds and diagonalizes the Hamiltonian in one Sz sector. Args: statemap: State map of the Sz sector. Jz: Array with S^z terms. dim: (number_spins). hJz: Array with the S^z S^z coupling. dim: (number_spins x number_spins). hJp: Array with the S^+ S^- coupling. dim: (number_spins x number_spins). Returns: Returns the Eigenvalues, and Eigenvectors in one Sz sector. """ nspins_total = Jz.shape[0] Sz_conserved_hamiltonian = csr_matrix_eigen(statemap.size(), statemap.size()) Sz_conserved_hamiltonian.set( Jz=Jz, Jp=np.zeros(nspins_total), Jm=np.zeros(nspins_total), hJz=hJz, hJp=0.5 * hJp, hJd=np.zeros((nspins_total, nspins_total)), sm=statemap, sm_to=statemap, ) energies, vectors = np.linalg.eigh(Sz_conserved_hamiltonian.todense()) return energies, vectors
[docs] def calc_correlator_function_parallel_Sz_conserved( Enm: np.ndarray, list_expectation_values_left: list[np.ndarray], expectation_values_right: np.ndarray, threshold_matrix_elements: float, eta: np.ndarray, omegas: np.ndarray, correlator_function_fortran: np.ndarray, ) -> None: """Calculate spectral function for one individual spin. Args: Enm: Energy differences between the different eigenenergies. list_expectation_values_left: Expectation values for the ladder operators on the left of the correlator. expectation_values_right: Expectation values of total spin ladder operator threshold_matrix_elements: Threshold until which the Matrix elements are evaluated. eta: Explicit spin-dependent broadening of the peaks. omegas: Frequency range. correlator_function_fortran: Empty array to be overwritten with the spin resolved spectral function. Has to fortran style. """ for x in range(len(list_expectation_values_left)): # precalculate the terms <n|I_x^+|m><m|I^+|n> to be used in the loop over the frequencies expectation_values = list_expectation_values_left[x] * expectation_values_right * eta[x] idx_n, idx_m = np.where(np.abs(expectation_values) > threshold_matrix_elements) Enm_x = Enm[idx_n, idx_m] expectation_values = expectation_values[idx_n, idx_m] if correlator_function_fortran.dtype == complex: calculate_greens_function_for_nmr_spin_dependent( x, eta[x], omegas, Enm_x, expectation_values, correlator_function_fortran ) else: calculate_spectral_function_for_nmr_spin_dependent( x, eta[x], omegas, Enm_x, expectation_values, correlator_function_fortran )
[docs] def evaluate_braket( operator: fermions.ExpressionSpinful, bra: np.ndarray, ket: np.ndarray, statemap_bra: StateMap, statemap_ket: StateMap, ) -> np.ndarray: """Evaluate expressions of the form <n|O|m>, where O is some operator. Args: operator: Fermion expression for which to evaluate the braket. bra: Bra vectors, stored in matrix. ket: Ket vectors, stored in matrix. statemap_bra: State map for the bra vector. statemap_ket: State map for the ket vector. """ if operator.size() == 0: return np.zeros((statemap_bra.size(), statemap_ket.size())) operator_triplets = get_spin_triplets_from_expression(operator, statemap_ket, statemap_bra) operators_matrix = csr_matrix_eigen(statemap_bra.size(), statemap_ket.size()) operators_matrix.set(operator_triplets) tmp = np.zeros((operators_matrix.shape[0], ket.shape[1])) operators_matrix.dot(ket, tmp) return bra.T @ tmp
[docs] def calc_correlator_function_variable_spin_number( calc_greens_function: bool, spin_indices: list[int], site_resolved_operators: Union[fermions.ExpressionSpinful, list[fermions.ExpressionSpinful]], operator_sum: fermions.ExpressionSpinful, Jz: np.ndarray, hJz: np.ndarray, hJp: np.ndarray, omegas: np.ndarray, eta: np.ndarray, magnetic_shift: float, threshold_matrix_elements: float, verbose: int, ) -> np.ndarray: r"""Calculate specified spin contributions of an NMR spectrum. The spin contributions are calculated exploiting Sz conservation through a direct resolvent approach. Args: calc_greens_function: If true the Green's function is calculated, otherwise the spectral function. spin_indices: List of spin indices for which to calculate the spectral function. site_resolved_operators: List of site-resolved operators or operators on one site. operator_sum: Sum of operators acting on each site. Jz: Array with Sz terms. hJz: Array with the Sz Sz coupling. hJp: Array with the S+ S- coupling. omegas: Desired frequencies. eta: Explicit spin-dependent broadening of the peaks. magnetic_shift: Magnetic shift of the hamiltonian. threshold_matrix_elements: Threshold until which the Matrix elements are evaluated. verbose: Level of verbosity of output. Returns: An array of the spectral function for each frequency for this cluster. """ if isinstance(site_resolved_operators, list): site_resolved_operator_list = site_resolved_operators else: site_resolved_operator_list = [site_resolved_operators] nspins_total = Jz.shape[0] Z = 2**nspins_total number_steps = omegas.size statemap = StateMap() statemap_minus = StateMap() if calc_greens_function: correlator_function_fortran = np.zeros( (number_steps, len(spin_indices)), dtype=complex, order="F" ) else: correlator_function_fortran = np.zeros( (number_steps, len(spin_indices)), dtype=float, order="F" ) statemap.init_spins(nspins_total, -nspins_total, 0) if verbose > 1: print(f"{nspins_total} Start Sz: {-nspins_total}: {-nspins_total / nspins_total}") energies, vectors = diagonalize_Sz_conserved_hamiltonian(statemap, Jz, hJz, hJp) dim = statemap.size() # Obtain the eigenvalues and eigenvectors of the spin Hamiltonian. for Sz in range(-nspins_total, nspins_total, 2): if verbose > 1: print(f"{nspins_total} Start Sz: {Sz + 2}: {Sz + 2 / nspins_total}") # state map of the Hamiltonian in the current iteration statemap.init_spins(nspins_total, Sz + 2, 0) # state map corresponding to the sector where one ends up by applying I^- statemap_minus.init_spins(nspins_total, Sz, 0) if verbose > 1: print(f"{nspins_total} init Sz: {Sz}: {Sz / nspins_total}") # calculate energies in the statemap sector, # keep the result from the statemap_minus sector energies_minus = energies vectors_minus = vectors dim_minus = dim dim = statemap.size() energies, vectors = diagonalize_Sz_conserved_hamiltonian(statemap, Jz, hJz, hJp) # E_m + 0.5 * (Sz - nspins_total) * magnetic_shift # noqa: ERA001 # - E_n - 0.5 * (Sz + 2 - nspins_total) * magnetic_shift # noqa: ERA001 # = Em - En - magnetic_shift Enm = ( np.outer(energies_minus, np.ones(dim)) - np.outer(np.ones(dim_minus), energies) - magnetic_shift ) list_expectation_values_left = [ evaluate_braket( site_resolved_operator_list[spin_index], vectors_minus, vectors, statemap_minus, statemap, ) for spin_index in spin_indices ] expectation_values_right = evaluate_braket( operator_sum, vectors_minus, vectors, statemap_minus, statemap ) calc_correlator_function_parallel_Sz_conserved( Enm, list_expectation_values_left, expectation_values_right, threshold_matrix_elements, eta, omegas, correlator_function_fortran, ) correlator_function = np.ascontiguousarray(correlator_function_fortran.T) / Z return correlator_function