Source code for hqs_nmr.postprocessing

# Copyright © 2024-2025 HQS Quantum Simulations GmbH. All Rights Reserved.

# LICENSE PLACEHOLDER

"""NMR spectra postprocessing routines."""

from __future__ import annotations

import numpy as np
from scipy import interpolate as interpol
from typing import Union, overload, Any, TYPE_CHECKING
import numpy.typing as npt

if TYPE_CHECKING:
    from hqs_nmr_parameters import NMRParameters
from hqs_nmr_parameters import nmr_hamiltonian

from hqs_nmr import datatypes, utils, conversion, hamiltonian_tools
from hqs_nmr.calculate import calculate_greens_function, calculate_eom_greens_function


[docs] def prepare_shifting( greens_function: datatypes.NMRGreensFunction1D, num_omegas_spline: int = 2000, offset: float = 1e-12, ) -> tuple[np.ndarray, list[interpol.CubicSpline], list[interpol.CubicSpline]]: r"""Prepare splines and rediscretized frequency points for shifting the shifts. Args: greens_function: Green's function calculated using hqs_nmr. num_omegas_spline: Number of frequency points added to the rediscretized. frequencies. Defaults to 2000. offset: Small factor to avoid division by zero. Defaults to 1e-12. Returns: rediscretized_omegas_ppm: Original omegas with added linear discretization in ppm. splines_real: List with splines fitting the real part entries of the Green's function. splines_complex: List with splines fitting the imaginary part entries of the Green's function. """ greens_function_inv = np.zeros_like(greens_function.spin_contributions) for i in range(greens_function.spin_contributions.shape[0]): greens_function_inv[i, :] = 1 / (greens_function.spin_contributions[i, :] + offset) rediscretized_omegas_ppm = rediscretize_frequency_range( greens_function.omegas_ppm, num_omegas_spline ) splines_real, splines_imag = fit_spline_to_vector_function( greens_function.omegas_ppm, greens_function_inv ) return rediscretized_omegas_ppm, splines_real, splines_imag
[docs] def shift_greens_function( shifts: np.ndarray, greens_function: datatypes.NMRGreensFunction1D, rediscretized_omegas_ppm: np.ndarray, splines_real: list[interpol.CubicSpline], splines_imag: list[interpol.CubicSpline], number_relevant_spins: int, ) -> datatypes.NMRSpectrum1D: r"""Shift Green's function using spline fit. Args: shifts: The shifts of the magnetic shifts. greens_function: Green's function that is supposed to be shifted. rediscretized_omegas_ppm: Rediscretized frequency points in ppm. splines_real: Splines for the real part of the Green's function. splines_imag: Splines for the imaginary part of the Green's function. number_relevant_spins: Number of times the homo-isotope appears in the molecule. Returns: Normalized and shifted spectrum. """ num_omegas_spline = rediscretized_omegas_ppm.size nspins_total = len(splines_real) shifted_greens_function = np.zeros((nspins_total, num_omegas_spline), dtype=complex) for i in range(nspins_total): shift = shifts[i] shifted_greens_function[i, :] = 1 / ( splines_real[i](rediscretized_omegas_ppm - shift) + 1j * splines_imag[i](rediscretized_omegas_ppm - shift) ) shifted_spectral_function = shifted_greens_function.imag utils.normalize_correlator( rediscretized_omegas_ppm, shifted_spectral_function, number_relevant_spins ) return datatypes.NMRSpectrum1D( omegas_ppm=rediscretized_omegas_ppm, spin_contributions=shifted_spectral_function, fwhm_ppm=greens_function.fwhm_ppm, )
[docs] def rediscretize_frequency_range( omegas_ppm: np.ndarray, num_omegas_spline: int = 2000 ) -> np.ndarray: r"""Rediscretize the frequency range for the spline fits. Add an additional linear discretization to the current distribution. Args: omegas_ppm: Frequency discretization without the linear discretization. num_omegas_spline: Minimal number of points in the linear discretization. Returns.: Vector with new discretization. """ # Number of linear discretization points that should be at least achieved omegas_spline = np.zeros(omegas_ppm.size + num_omegas_spline) delta_omega_spline = (omegas_ppm[-1] - omegas_ppm[0]) / num_omegas_spline # merge lineare discretization with the adapted mesh num_omegas_spline = 0 for n in range(omegas_ppm.size - 1): omegas_spline[num_omegas_spline] = omegas_ppm[n] num_omegas_spline += 1 delta_omega_n = omegas_ppm[n + 1] - omegas_ppm[n] if delta_omega_n > delta_omega_spline: num_new_omegas = int(delta_omega_n / delta_omega_spline) delta_omega_n = (omegas_ppm[n + 1] - omegas_ppm[n]) / (num_new_omegas + 1) for _ in range(num_new_omegas): omegas_spline[num_omegas_spline] = ( omegas_spline[num_omegas_spline - 1] + delta_omega_n ) num_omegas_spline += 1 omegas_spline[num_omegas_spline] = omegas_ppm[-1] return omegas_spline[: num_omegas_spline + 1]
@overload def fit_spline_to_vector_function( parameters: np.ndarray, vector_function: npt.NDArray[np.floating] ) -> list[interpol.CubicSpline]: ... @overload def fit_spline_to_vector_function( parameters: np.ndarray, vector_function: npt.NDArray[np.complexfloating] ) -> tuple[list[interpol.CubicSpline], list[interpol.CubicSpline]]: ...
[docs] def fit_spline_to_vector_function( parameters: np.ndarray, vector_function: np.ndarray ) -> Union[ list[interpol.CubicSpline], tuple[list[interpol.CubicSpline], list[interpol.CubicSpline]], ]: r"""Fit spline to real or complex vector function. Args: parameters: Parameters at which the vector function was evaluated. vector_function: Values of the vector function. Returns: If the vector function is real, it returns one list with a spline associated with each vector function entry, otherwise it returns one list for the real and one for the complex part. """ vector_dim = vector_function.shape[0] spline_real_part = [] spline_imag_part = [] for x in range(vector_dim): spline_real_x = interpol.CubicSpline( parameters, np.real(vector_function[x, :]), bc_type="natural" ) spline_real_part.append(spline_real_x) if vector_function.dtype == complex: for x in range(vector_dim): spline_imag_x = interpol.CubicSpline( parameters, np.imag(vector_function[x, :]), bc_type="natural" ) spline_imag_part.append(spline_imag_x) else: return spline_real_part return spline_real_part, spline_imag_part
[docs] def create_new_molecule( molecule_parameters: NMRParameters, shifts_of_Jz_ppm: np.ndarray, ) -> NMRParameters: r"""Create a new molecular NMR parameter representation, with adapted shifts. Args: molecule_parameters: Molecular NMR parameters that should be adapted. shifts_of_Jz_ppm: Shifts of the magnetic shifts in ppm. Returns: Molecular NMR parameters with the adapted shifts. """ molecule_parameters_adapted = molecule_parameters.model_copy() # Note: original shifts are also defined in ppm. molecule_parameters_adapted.shifts += shifts_of_Jz_ppm return molecule_parameters_adapted
[docs] def get_fitted_greens_function( greens_function: datatypes.NMRGreensFunction1D, num_omegas_spline: int = 2000, offset: float = 1e-12, ) -> tuple[np.ndarray, np.ndarray]: """Calculate a spline fit of a Green's function after rediscretizing the frequencies. Args.: greens_function: Green's function to fit. num_omegas_spline: Number of frequency points added to the rediscretized frequencies. Defaults to 2000. offset: Small factor to avoid division by zero when fitting the Green's function. Defaults to 1e-12. Returns: Rediscretized frequency range and fitted Green's function. """ ( rediscretized_omegas_ppm, splines_real_greens_function, splines_imag_greens_function, ) = prepare_shifting(greens_function, num_omegas_spline, offset) num_spins = greens_function.spin_contributions.shape[0] fitted_greens_function = np.zeros((num_spins, rediscretized_omegas_ppm.size), complex) for i in range(num_spins): fitted_greens_function[i, :] = 1 / ( splines_real_greens_function[i](rediscretized_omegas_ppm) + 1j * splines_imag_greens_function[i](rediscretized_omegas_ppm) ) return rediscretized_omegas_ppm, fitted_greens_function
[docs] def j_coupling_adaptation_parameters( result_greens_function: datatypes.NMRResultGreensFunction1D, result_eom_greens_function: datatypes.NMRResultGreensFunction1D, result_eom_correction_greens_function: datatypes.NMRResultGreensFunction1D, ) -> dict[str, Any]: """Determine all parameters needed to adapt a Green's function with respect to some J-coupling. Note that all Green's functions used here should be non normalized. Args.: result_greens_function: Green's function that should be adapted. result_eom_greens_function: EOM Green's function associated with the standard NMR Green's function. result_eom_correction_greens_function: EOM Green's function to correct the standard NMR Green's function. Returns: A dictionary with all necessary parameters. """ # Fit the Green's functions rediscretized_omegas_ppm, fitted_greens_function = get_fitted_greens_function( result_greens_function.greens_function ) _, fitted_eom_greens_function = get_fitted_greens_function( result_eom_greens_function.greens_function ) _, fitted_eom_correction_greens_function = get_fitted_greens_function( result_eom_correction_greens_function.greens_function ) # Frequencies will be needed in rad_per_s and ppm. rediscretized_omegas_rad_per_s = conversion.ppm_to_rad_per_s( rediscretized_omegas_ppm, result_greens_function.calculation_parameters ) # Get broadening used in Green's function fwhm_rad_per_s = conversion.ppm_to_rad_per_s( result_greens_function.greens_function.fwhm_ppm, result_greens_function.calculation_parameters, ) broadening_rad_per_s = fwhm_rad_per_s / 2 # Get Sz terms in rad per s. hamiltonian = nmr_hamiltonian( result_greens_function.molecule_parameters, result_greens_function.calculation_parameters.field_T, reference_isotope=result_greens_function.calculation_parameters.reference_isotope, gyromagnetic_ratios=result_greens_function.calculation_parameters.gyromagnetic_ratios, ) sz_terms_rad_per_s, _, _ = hamiltonian_tools.extract_coupling(hamiltonian) return { "rediscretized_omegas_rad_per_s": rediscretized_omegas_rad_per_s, "rediscretized_omegas_ppm": rediscretized_omegas_ppm, "broadening_rad_per_s": broadening_rad_per_s, "sz_terms_rad_per_s": sz_terms_rad_per_s, "greens_function": fitted_greens_function, "eom_greens_function": fitted_eom_greens_function, "eom_correction_greens_function": fitted_eom_correction_greens_function, }
[docs] def prepare_j_coupling_adaptation( molecule_parameters: datatypes.NMRParameters, calculation_parameters: datatypes.NMRCalculationParameters, adaptation_indices: Union[tuple[int, int], list[tuple[int, int]]], ) -> tuple[datatypes.NMRResultGreensFunction1D, dict[str, Any]]: """Calculate the Green's function and all parameters needed to perform a J-coupling adaptation. Args.: molecule_parameters: The NMR parameters of the molecule, which should be adapted. calculation_parameters: The NMR calculation parameters as defined for a standard NMR Green's function calculation. adaptation_indices: Tuple or list of tuple of all J-coupling which are supposed to be adapted at once. Returns: The result of a standard Green's function calculation using the input parameters and a dictionary with all necessary parameters to perform a J-coupling adaptation. """ # We do not normalize directly to be able to do the J-coupling adaptation later. normalize_spectrum_input = calculation_parameters.normalize_spectrum calculation_parameters.normalize_spectrum = False # The standard Green's function obtained typically from DFT input data. result_dft_greens_function = calculate_greens_function( molecule_parameters, calculation_parameters ) # The EOM Green's function F as it comes out directly from the derivation. result_eom_greens_function = calculate_eom_greens_function(result_dft_greens_function) # The correction to the EOM Green's function F. result_eom_correction_greens_function = calculate_eom_greens_function( result_dft_greens_function, adaptation_indices ) # Get parameters needed to perform the J-coupling adaptation parameters_j_coupling_adaptation = j_coupling_adaptation_parameters( result_dft_greens_function, result_eom_greens_function, result_eom_correction_greens_function, ) # After calculating all parameters needed for the J-coupling adaptation we can normalize # the calculated Green's function. result_dft_greens_function.greens_function.spin_contributions = utils.normalize_correlator( result_dft_greens_function.greens_function.omegas_ppm, result_dft_greens_function.greens_function.spin_contributions, ) # Change the calculation_parameters back to what they were in the beginning. calculation_parameters.normalize_spectrum = normalize_spectrum_input return result_dft_greens_function, parameters_j_coupling_adaptation
[docs] def adapt_spectrum_by_j_coupling( delta_j_coupling: float, rediscretized_omegas_rad_per_s: np.ndarray, rediscretized_omegas_ppm: np.ndarray, broadening_rad_per_s: Union[float, np.ndarray], sz_terms_rad_per_s: np.ndarray, greens_function: np.ndarray, eom_greens_function: np.ndarray, eom_correction_greens_function: np.ndarray, ) -> np.ndarray: """Adapt a spectrum with respect to a shift in a J-coupling. Which J-coupling is shifted depends on the EOM correction Green's function. Args: delta_j_coupling: Shift of the J-coupling. rediscretized_omegas_rad_per_s: Rediscretized frequency range in rad per s. rediscretized_omegas_ppm: Rediscretized frequency range in ppm. broadening_rad_per_s: Artificial broadening (half of the fwhm) in rad per s. If a vector is handed over a spin-dependent broadening is assumed. sz_terms_rad_per_s: Array with the coefficients of the I^z terms in the Hamiltonian. greens_function: The spin contributions of the Green's function to be adapted. eom_greens_function: The spin contributions of the EOM Green's function associated with the standard Green's function. eom_correction_greens_function: The spin contributions of the EOM correction Green's function. Returns: The normalized Green's function spin contributions with the adapted J-coupling taken into account. """ num_spins = sz_terms_rad_per_s.size if isinstance(broadening_rad_per_s, float): broadening_rad_per_s = broadening_rad_per_s * np.ones(num_spins) eom_greens_function_spin_contributions = np.zeros_like(greens_function) for k in range(num_spins): eom_greens_function_spin_contributions[k, :] = 0.5 / ( rediscretized_omegas_rad_per_s + 1j * broadening_rad_per_s[k] + sz_terms_rad_per_s[k] - (eom_greens_function[k, :] + delta_j_coupling * eom_correction_greens_function[k, :]) / greens_function[k, :] ) utils.normalize_correlator(rediscretized_omegas_ppm, eom_greens_function_spin_contributions) return eom_greens_function_spin_contributions