Source code for hqs_nmr.datatypes

# Copyright © 2022-2025 HQS Quantum Simulations GmbH. All Rights Reserved.

# LICENSE PLACEHOLDER

"""Data types to deal with calculation results."""

from __future__ import annotations

from pathlib import Path
from typing import (
    TYPE_CHECKING,
    Annotated,
    Any,
    Optional,
    Tuple,
    Type,
    TypeVar,
    Union,
    cast,
)

import numpy as np
from hqs_nmr_parameters import GYROMAGNETIC_RATIOS, Isotope, NMRParameters
from lattice_functions.Fermions import ExpressionSpinful
from pydantic import (
    BaseModel,
    BeforeValidator,
    ConfigDict,
    PlainSerializer,
    WithJsonSchema,
)

if TYPE_CHECKING:
    from pathlib import Path

GyromagneticRatios = cast(dict[Isotope, float], GYROMAGNETIC_RATIOS)

DEFAULT_UNKNOWN = "Unknown"
"""Default value for unknown string property, such as `NMRExperimentalSpectrum1D.license`."""


[docs] def _list_to_array(data: list[Any]) -> np.ndarray: return np.array(data).astype(float)
[docs] def _array_to_list(data: np.ndarray) -> list[Any]: return cast(list[Any], data.astype(float).tolist())
[docs] def _dict_to_complex2d( d: Union[np.ndarray, dict[str, list[list[float]]]], ) -> np.ndarray: """Convert dictionary representation of 2D complex array to a numpy array. Args: d: Serialized 2D numpy array as dictionary. Returns: A 2D numpy array with data type `complex` """ if isinstance(d, np.ndarray): return d return np.vectorize(complex)(d["real"], d["imag"])
[docs] def _complex2d_to_dict(array: np.ndarray) -> dict[str, list[list[float]]]: """Convert a 2D complex numpy array to a dictionary. Args: array: A 2D numpy array with data type `complex`. Returns: A dictionary with fields `imag` and `real`, each of which containing a 2D array of floats. """ return { "real": [list(map(float, arr)) for arr in array.real], "imag": [list(map(float, arr)) for arr in array.imag], }
[docs] def _dict_to_list(data: dict[Isotope, float]) -> list[Any]: return [(item[0], item[1]) for item in data.items()]
[docs] def _to_dict(data: Union[dict, list[Any]]) -> dict[Isotope, float]: if isinstance(data, dict): return data else: return {Isotope(item[0][0], item[0][1]): item[1] for item in data}
[docs] def _fermion_expression_to_str(data: ExpressionSpinful) -> str: return data.__repr__()
[docs] def _str_to_fermion_expression(data: str) -> ExpressionSpinful: return ExpressionSpinful(data)
# TODO: At this point ExpressionSpinful is interpreted as type Any. However, pydantic normally # uses this type to enforce at runtime that the user only sets attributes with the correct # type. Therefore, currently any variable can be set as an attribute with this type. This needs # to be fixed in a future merge. FermionsExpression = Annotated[ ExpressionSpinful, BeforeValidator(_str_to_fermion_expression), PlainSerializer(_fermion_expression_to_str), WithJsonSchema({"type": "string"}), ] DictIsotopeFP64 = Annotated[ dict[Isotope, float], BeforeValidator(_to_dict), PlainSerializer(_dict_to_list), ] NDArray1DFP64 = Annotated[ np.ndarray[Any, np.dtype[np.floating]], BeforeValidator(_list_to_array), PlainSerializer(_array_to_list), WithJsonSchema({"items": {"type": "number"}, "type": "array"}), ] NDArray2DFP64 = Annotated[ np.ndarray[Tuple[Any, Any], np.dtype[np.floating]], BeforeValidator(_list_to_array), PlainSerializer(_array_to_list), WithJsonSchema({"items": {"items": {"type": "number"}, "type": "array"}, "type": "array"}), ] NDArray2DComplexFP128 = Annotated[ np.ndarray[tuple[Any, Any], np.dtype[np.complexfloating]], BeforeValidator(_dict_to_complex2d), PlainSerializer(_complex2d_to_dict), WithJsonSchema( { "type": "object", "properties": { "real": { "type": "array", "items": {"type": "array", "items": {"type": "number"}}, }, "imag": { "type": "array", "items": {"type": "array", "items": {"type": "number"}}, }, }, } ), ]
[docs] class NMRBaseModel(BaseModel): """Base class for all NMR data types.""" model_config = ConfigDict(arbitrary_types_allowed=True)
NMRBaseModelType = TypeVar("NMRBaseModelType", bound=NMRBaseModel)
[docs] class NMRSpectrum1D(NMRBaseModel): """The NMRSpectrum1D datatype holds a NMR spectrum. Args: omegas_ppm: Frequencies in ppm. spin_contributions: Individual spin contributions to the spectrum. The contributions are stored as a N_{spin} x N_{omegas} numpy array where each row holds the contribution of the corresponding spin. fwhm_ppm: Full width half maximum in ppm. Either a scalar, if applying to all spins equally or a vector if defined spin-dependently. """ omegas_ppm: NDArray1DFP64 spin_contributions: NDArray2DFP64 fwhm_ppm: Union[float, NDArray1DFP64]
[docs] class NMRExperimentalSpectrum1D(NMRBaseModel): """Represents a 1D experimental NMR spectrum. Args: frequency_MHz: Observed frequency in MHz. omegas_ppm: Chemical shift values in ppm. intensity: Spectrum intensity values. solvent: Solvent used in NMR experiment. temperature: Temperature (in Kelvin) at which NMR experiment was recorded. isotope: Observed isotope. source: Owner or producer of the spectrum. license: License associated with the spectrum (as SPDX identifier if possible). """ frequency_MHz: float omegas_ppm: NDArray1DFP64 intensity: NDArray1DFP64 solvent: str temperature: Optional[float] = None isotope: Isotope source: str = DEFAULT_UNKNOWN license: str = DEFAULT_UNKNOWN
[docs] class NMRGreensFunction1D(NMRBaseModel): """The NMRGreensFunction1D datatype holds a NMR Green's function. Args: omegas_ppm: Frequencies in ppm. spin_contributions: Individual spin contributions to the spectrum. The contributions are stored as a N_{spin} x N_{omegas} numpy array where each row holds the contribution of the corresponding spin. fwhm_ppm: Full width half maximum in ppm. Either a scalar, if applying to all spins equally or a vector if defined spin-dependently. """ omegas_ppm: NDArray1DFP64 spin_contributions: NDArray2DComplexFP128 fwhm_ppm: Union[float, NDArray1DFP64]
[docs] class NMRSolverSettings(NMRBaseModel): """Solver specific arguments to customize the NMR solver. Args: solve_exactly: If True, the spectrum of the entire molecule is calculated at once. Symmetries will be exploited where applicable, but no approximations are made. Defaults to false. solver_str: When set, the specified solver is chosen for all cluster calculations. If None, the solver is chosen dynamically at runtime depending on the properties of each cluster. Valid input strings are "nmr_solver", "nmr_solver_local_su2", "reference_nmr_solver", or "complete_nmr_solver". Defaults to None. calc_greens_function. If True, the Green's function is calculated instead of the spectral function. Defaults to False. only_relevant_spins: If True, only spin contributions of spins that have the same isotope as the homo-isotope are calculated. Otherwise all spin contributions are. Defaults to True. threshold_matrix_elements: Threshold until which the Matrix elements are evaluated. Defaults to 1e-4. max_cluster_size: Maximum size a cluster is allowed to have. Defaults to 12. weight_offset: Small offset to avoid division by zero when creating the weight matrix for clustering methods. Defaults to 0.1. min_size_local_su2: To avoid computational overhead, the local SU2 symmetry is only used if the cluster size is larger than this value. Defaults to 13. tolerance_couplings: Tolerance for the J couplings in the group identifier in percent. Defaults to 1.0. tolerance_shifts: Tolerance for the shifts in the group identifier in percent. Defaults to 1.0. operators_left: A list of the operators M^-_l in the Green's function (see Math section in user documentation). Setting this attribute only works with the default "nmr_solver", therefore the operators have to be chosen to decrease the I^z quantum number by 1/2. There have to be as many elements in the list as there are spins in the molecule. operator_right: The hermitian conjugate of the operator M^+ in the Green's function (see Math section in user documentation). Setting this attribute only works with the default "nmr_solver", therefore the operator has to be chosen to decrease the I^z quantum number by 1/2. verbose: Level of verbosity of output. Defaults to zero. """ solve_exactly: bool = False solver_str: Optional[str] = None calc_greens_function: bool = False only_relevant_spins: bool = True threshold_matrix_elements: float = 1e-4 max_cluster_size: int = 12 weight_offset: float = 0.1 min_size_local_su2: int = 13 tolerance_couplings: float = 1.0 tolerance_shifts: float = 1.0 operators_left: Optional[list[FermionsExpression]] = None operator_right: Optional[FermionsExpression] = None verbose: int = 0
[docs] class NMRCalculationParameters(NMRBaseModel): """All parameters for an NMR spectrum calculation for a given molecule. Args: field_T: The magnetic field in Tesla. To convert a reference frequency to a magnetic field the conversion module of hqs_nmr can be used. conversion.frequency_MHz_to_field_T(frequency_MHz) The function has a keyword reference_isotope to specify the isotope with respect to which the frequency is defined. It is set to Isotope(1, "H") by default. temperature_K: The laboratory temperature in Kelvin. Defaults to 300 K. gyromagnetic_ratios: Dictionary of gyromagnetic ratios in rad / (T s). reference_isotope: Isotope specified as Isotope(mass, symbol) to define the frequency (w=gamma*field) of the rotating frame. Defaults to Isotope(1, 'H'). number_omegas: Number of frequency points in the final spectral function. Defaults to 2000. frequency_window_ppm: Optional upper and lower bound of user-defined frequency window in ppm. Defaults to None. fwhm_Hz: Full Width Half Maximum (FWHM) or intrinsic line width in Hz. If a scalar is handed over, the same FWHM is assumed for all spins. In case of a vector, the FWHM will be chosen for each spin independently according to its index. If None the solver will choose a broadening based on the J-coupling values in the molecule. Defaults to None. normalize_correlator: If True the correlator is normalized, otherwise not. Defaults to True. omegas_ppm: User specified frequency discretization. If None, a discretization is estimated automatically. Defaults to None. solver_settings: NMRSolverSettings object storing information on the cluster and solver methods. If None, the default parameters are used. Defaults to None. """ field_T: float temperature_K: float = 300 gyromagnetic_ratios: DictIsotopeFP64 = GyromagneticRatios reference_isotope: Isotope = Isotope(1, "H") number_omegas: int = 2000 frequency_window_ppm: Optional[tuple[float, float]] = None fwhm_Hz: Union[float, NDArray1DFP64, None] = None normalize_spectrum: bool = True omegas_ppm: Optional[NDArray1DFP64] = None solver_settings: NMRSolverSettings = NMRSolverSettings() @property def reference_frequency_rad_per_s(self) -> float: """Calculate the reference frequency. Returns: Reference frequency in units of rad / s. """ return self.field_T * self.gyromagnetic_ratios[self.reference_isotope] @property def reference_gyromagnetic_ratio(self) -> float: """Return the reference gyromagnetic ratio. Returns: Reference gyromagnetic ratio. """ return self.gyromagnetic_ratios[self.reference_isotope]
[docs] class NMRResultSpectrum1D(NMRBaseModel): """Result of a 1D NMR spectrum calculation stored together with all input parameters. Args: molecule_parameters: The molecule's NMR parameters used for the calculation. calculation_parameters: All parameters needed to repeat the calculation using calculate_spectrum method. spectrum: The result of the calculation. """ molecule_parameters: NMRParameters calculation_parameters: NMRCalculationParameters spectrum: NMRSpectrum1D
[docs] class NMRResultGreensFunction1D(NMRBaseModel): """Result of a 1D NMR Green's function calculation stored together with all input parameters. Args: molecule_parameters: The molecule's NMR parameters used for the calculation. calculation_parameters: All parameters needed to repeat the calculation using calculate_greens_function method. greens_function: The result of the calculation. """ molecule_parameters: NMRParameters calculation_parameters: NMRCalculationParameters greens_function: NMRGreensFunction1D
[docs] def to_json(cls: BaseModel, file: Union[str, Path]) -> None: """Saves a class instance that implements a JsonInterface to JSON. Args: cls: Instance of a class that implements the JsonInterface. file: Path to the file where the class should be saved. """ with open(file, "w") as fp: fp.write(cls.model_dump_json())
[docs] def from_json(cls: Type[NMRBaseModelType], file: Union[str, Path]) -> NMRBaseModelType: """Instantiates a class instance from a JSON file. The class must implement the JsonInterface. Args: cls: Class (type) to be instantiated. file: Path to the JSON file to be loaded. Returns: The instantiated object. """ with open(file, "r") as fp: raw_json = fp.read() return cls.model_validate_json(raw_json)